menu.header.image.logo_repositoriomenu.header.image.logo_ucsal
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
menu.header.image.logo_repositoriomenu.header.image.logo_ucsal
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Aquino, Rafael Rembrandt"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Adaptação do WGAN ao processo estocástico
    (Universidade Católica do Salvador, 2020-09-30) Aquino, Rafael Rembrandt; Wyzykowski, André Brasil Vieira; http://lattes.cnpq.br/; Pereira, Mário Jorge; http://lattes.cnpq.br/; Reis, Marcelo Índio dos; http://lattes.cnpq.br/
    Within different areas of knowledge, data (different types of information) are valuable and their analysis is even more valuable. Then, associating the area of artificial intelligence, a new trend is observed, the generation of synthetic data to fill the lack of data. Therefore, analyzing current contexts, this work aims to demonstrate the use of techniques based on random events to optimize the result in the execution of algorithms based on GAN (Generative adversarial networks) and through a validation through the calculating the FID (Frechet Inception Distance) it was possible to analyze the results, determining the quality of the data generated by the proposed algorithm compared to WGAN.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback