menu.header.image.logo_repositoriomenu.header.image.logo_ucsal
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
menu.header.image.logo_repositoriomenu.header.image.logo_ucsal
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Santos, Lucas Pereira"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Detecção de catarata por meio de imagens utilizando redes neurais convolucionais
    (Universidade Católica do Salvador, 2020-12-11) Carneiro, Hugo Vinícius; Santos, Lucas Pereira; Wyzykowski, André Brasil Vieira; http://lattes.cnpq.br/; Jesus, Arnaldo Bispo de; http://lattes.cnpq.br/; Assis, Semiramis Ribeiro de; http://lattes.cnpq.br/
    Cataract is one of the diseases of the eyeball that generates the most blindness in the world. The rapid detection of this disease, close to the appropriate treatment, contributes to the improvement of the patients’ quality of life. This work uses convolutional neural networks to train three sets of data containing images of different patients, in order to classify cataract patients and non-carriers. For this, a convolutional neural network vgg19 had its architecture modified and improved. The most successful results used by the network, was an accuracy of 100 %.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback